Parameter Estimation Algorithm for Storm Intensity Model with Single Return Period Based on Multicellular Gene Expression Programming

نویسندگان

  • Yu-zhong Peng
  • Jie Li
  • Chang-an Yuan
  • Baoqin Hu
چکیده

To resolve the difficulty of parameter estimation of Storm rainfall intensity formulation, a new multicellular GEP parameter estimation algorithm, named MC_GEP_MPO, with a novel individual coding scheme based on Gene Expression Programming algorithm is proposed in this paper. MC_GEP_MPO is used for solving the parameter estimation problem of the single return period of rainfall intensity forecast model using historical rainfall statistical data as a learning example. And its effectiveness in real compute instance has been evaluated. The compared experiment result shows that the proposed method exploring for parameter estimation of Storm rainfall intensity formulation is feasible and precise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Correlation Based on Multi-Gene Genetic Programming for Predicting the Sweet Natural Gas Compressibility Factor

Gas compressibility factor (z-factor) is an important parameter widely applied in petroleum and chemical engineering. Experimental measurements, equations of state (EOSs) and empirical correlations are the most common sources in z-factor calculations. However, these methods have serious limitations such as being time-consuming as well as those from a computational point of view, like instabilit...

متن کامل

A Combinatorial Algorithm for Fuzzy Parameter Estimation with Application to Uncertain Measurements

This paper presents a new method for regression model prediction in an uncertain environment. In practical engineering problems, in order to develop regression or ANN model for making predictions, the average of set of repeated observed values are introduced to the model as an input variable. Therefore, the estimated response of the process is also the average of a set of output values where th...

متن کامل

A parameter-tuned genetic algorithm for vendor managed inventory model for a case single-vendor single-retailer with multi-product and multi-constraint

This paper develops a single-vendor single-retailer supply chain for multi-product. The proposed model is based on Vendor Managed Inventory (VMI) approach and vendor uses the retailer's data for better decision making. Number of orders and available capital are the constraints of the model. In this system, shortages are backordered; therefore, the vendor’s warehouse capacity is another limitati...

متن کامل

Presenting a new equation for estimation of daily coefficient of evaporation pan using Gene Expression Programming and comparing it with experimental methods (Case Study: Birjand Plain)

One of the most important componenets of water management in farms is estimating crops’ exact amount of  evapotranspiration (water need). The FAO-Penman-Montheis (FPM) method is a standard method to evaluate other techniques which are used for easy calculation of potential evapotranspiration, when lysimeter datasheets are not available. This study was carried out based on 18 years’ climatic dat...

متن کامل

Improvement of Gene Expression Programming Model Performance using Wavelet Transform for the Estimation of Long-Term Rainfall in Rasht City

Rainfall may be considered as the most important source of drinking water and watering land in different areas all over the world. Therefore, simulation and estimation of the hydrological phenomenon is of paramount importance. In this study, for the first time, the long-term rainfall in Rasht city was simulated using an optimum hybrid artificial intelligence (AI) model over a 62 year period fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014